A Novel Tablet-Based 13C Urea Breath Test for *Helicobacter pylori* with Enhanced Performance during Acid Suppression Therapy

A. Hamlet, L. Stage, H. Lönnroth, C. Cahlin, C. Nyström & A. Pettersson

Depts. of Surgery and Clinical Pharmacology, Sahlgren’s University Hospital, and Dept. of Physiology and Pharmacology, Göteborg University, Göteborg, and Dept. of Pharmaceutics, Uppsala University, Uppsala, Sweden

Background: The urea breath test (UBT) can still be improved in terms of user-friendliness and accuracy during acid-suppression therapy. This study was designed to evaluate a novel, rapidly disintegrating 13C UBT tablet, which was supplemented with citric acid to facilitate diagnosis of *Helicobacter pylori* in the hypochlorhydric stomach.

Methods: The efficacy of a fasting 13C tablet-based UBT (TUBT) was compared with that of a standard 13C UBT (SUBT) during 40 min after dosing, and optimal sampling points were determined. The single-point TUBT was validated against a ‘gold standard’ (GS) including a TUBT, culture, histology, and a CLO test in 134 dyspeptic patients, and its optimal cut-off point was determined by means of a biometric method. In addition, 20 SUBT-positive patients were randomized to perform either the TUBT or the SUBT after 7 days of omeprazole therapy (20 mg twice daily).

Results: Compared with a SUBT, the TUBT gave a quicker and wider separation between positive and negative results and an earlier optimal sampling point (10 versus 40 min). At 10 min the TUBT correctly classified 40 of 42 GS-positive subjects (sensitivity, 95%) and all of 92 GS-negative patients (specificity, 100%), and the optimal cut-off point was 1.8 δ per mil. Furthermore, when optimal sampling points were used, the TUBT ($t = 10$ min) proved to be more accurate than the SUBT ($t = 40$ min) during omeprazole treatment, correctly identifying all of 10 and 3 of 9 *H. pylori*-infected patients, respectively.

Conclusions: By supplying 13C urea and citric acid as a rapid-release tablet, it is possible to shorten the duration of the 13C UBT to 10 min, omit the test meal, and still maintain excellent accuracy, even during acid suppression therapy.

Key words: Acid suppression therapy; *Helicobacter pylori*; tablet-based urea breath test

Annika Hamlet, M.D., Ph.D., Dept. of Medicine, McMaster University Medical Centre, Intestinal Disease Research Programme, HSC-3N5C, 1200 Main St. West, Hamilton, Ontario L8N 3Z5, Canada (fax: +1 905-522-3454)

The urea breath test (UBT), first described by Graham et al. in 1987 (1), is currently considered the most important non-invasive test for *Helicobacter pylori* (2). It is relatively easy to perform, highly reliable in the pretreatment setting (3–5), and has been promoted as the ‘gold standard’ for confirming eradication (6–8). In its present form, however, the method is afflicted with some problems limiting its usefulness in clinical practice. The test can be performed using either 14C or 13C. The 14C UBT has recently been considerably simplified and improved by using a capsule formulation (3, 9). Enclosing the isotope in a capsule shields the urea from exposure to urease-producing oropharyngeal bacteria, thus making it possible to shorten the duration of the test to 10 min, omit the test meal, and still maintain or even enhance the performance of the test (3). However, a more widespread availability of the 13C UBT is limited by the strict regulations governing the use, handling, and storage of radioactive isotopes, which in practice precludes use outside hospitals and testing in children and women of child-bearing age. 13C, on the other hand, is a perfectly safe isotope that can be used on anyone, anywhere. Home-based 13C UBT kits have already been described (10, 11) but only non-formulated isotope preparations with test meals have been used so far. This means waiting a relatively long time (30–60 min) before breath sampling can be performed. Therefore, to improve the 13C UBT in a manner similar to that described above for the 14C UBT, we have developed and tested a rapid-release 13C urea tablet as part of an easy-to-use UBT kit.

Another problem with the present UBTs is that equivocal or false-negative UBT results often occur in patients taking acid-suppression therapy (12–15). For this reason it is currently recommended that antisecretory medications should be with-
produced from degraded urea. At a pH of less than
by the fact that an acidic environment is necessary for the
high intragastric pH (15). This possibility is further supported
blockers, suggesting that this effect might be the result of a
development of a user-friendly and readily available UBT kit
thus to evaluate this new tablet formulation to facilitate the
UBT remains unclear. Previously, it was believed that this
was a property unique to proton pump inhibitors (PPIs), since
in vitro studies have shown that these drugs not only inhibit H.
pylori urease activity (16, 17) but also exert anti-H. pylori
effects through a urease-independent mechanism (18). How-
ever, a more recent study has shown that false-negative UBT
results also occur during treatment with high doses of H2-
unions, which could move into the stomach (9, 10). In addi-
tion, it is conceivable that this effect might be a result of a
addition, that of enough H+ to ensure a microenvironmental pH of less than 4.0
during the test period may improve the diagnostic reliability of the UBT in patients taking acid-suppression therapy.
In the present study we have tested a newly developed
rapid-release tablet containing 13C urea and citric acid. Citric
acid was added to increase the acidity in the local micro-
environment of the hypochlorhydic stomach. Our aim was
to evaluate this new tablet formulation to facilitate the
development of a user-friendly and readily available UBT kit
that could be used to detect H. pylori during ongoing acid-suppression therapy. The efficacy of this
tablet-based 13C UBT was compared with that of a
previous gastric surgery and use of antibiotics or
in the 2 weeks preceding the study. In addition, we studied 147 subjects 4–12 weeks
after completion of eradication therapy against H. pylori. The
study was approved by the Ethical Committee of Göteborg
University, and informed consent was obtained from each
subject.

13C Urea breath test
Breath tests were carried out after an overnight fast and
performed under the supervision of a study nurse. Breath
samples were obtained by blowing through a disposable
plastic straw into a 20-ml vacutainer until condensation
appeared on the vacutainer wall. Thereafter the straw was
removed, and the vacutainer was immediately resealed. After
collection of a baseline breath sample, 100 mg 13C urea was
given either in tablet form or as a water solution. In
accordance with the well-validated European standard proto-
col (ESP) (19), the 13C urea water solution was drunk 10 min
after intake of a fatty test meal (one sachet of Complan, 50 ml
of semi-skimmed milk, and 100 ml of Calogen), given to
delay gastric emptying, whereas two 13C urea tablets, each
containing 50 mg 13C urea and 463 mg citric acid, were
ingested while fasting. Both tablets and water solution were
swallowed together with 200 ml of tap water. Additional
breath samples were collected 5, 10, 20, and 40 min after
administration of 13C urea.

Breath samples were analysed in a gas isotope ratio mass
spectrometer (Automated Breath 13Carbon Analyser, Europa
Scientific Ltd, Crewe, UK). Values were expressed as excess
δ per mil units, which is the ratio of 13C to 12C in the sample
compared with a standard, multiplied by 1000, minus the
base-line value.

Preparation of 13C urea tablets
To obtain instant disintegration and subsequent dissolution
of the tablets in the stomach, several formulation factors were
adjusted. The urea was milled to obtain a fine particulate
quality with high surface area. Further, the concept of ordered
mixing (20) was applied to counteract agglomeration of the
fine urea quality (21) and thus optimize both drug dissolution
(22) and mixture quality (23). To obtain both a deagglomera-
tion of the fine particulate quality of urea and also an adhesion
of primary urea particles to the coarser citric acid particles,
both components were admixed for 2 h. To enhance adequate
comactability and disintegration, two cellulose-based ex-
cipients, Avicel Ph 101 (60 mg/tablet) and Ac-Di-Sol (24 mg/
tablet) were admixed in the ordered mixture of urea. The final
tablet mass was compressed by using concave punches with a
diameter of 12.0 mm. Tablets for clinical trials were produced
by Diabact AB, Uppsala, Sweden.

Study design
In the first phase we compared the excretion curves of
13CO2 after ingestion of the 13C urea tablets versus after
drinking the 13C urea water solution. Forty dyspeptic patients
(32 men, 8 women; mean age, 55 years; range, 30–81 years)
were assigned to perform the tablet-based UBT and the ESP
UBT in random order, separated by a washout period of at
least 1 week. Patients who had an ESP UBT result exceeding
5 δ per mil at 40 min were classified as H. pylori-positive. The
optimal sampling point for each test was determined by
means of a biometric method (see below).

In the second phase the single-point tablet-based UBT was
validated against a ‘gold standard’ based on UBT results and
on those obtained by biopsy-based methods (culture, histol-
ology, and CLO testing). The patient was regarded as H. pylori-
infected if two or more tests, whatever their nature, were

Materials and Methods

Subjects
The subjects included in the study comprised 147 healthy
volunteers without a past or present history of gastrointestinal
disease and 189 patients with dyspeptic complaints attending
routine upper gastrointestinal endoscopy at the endoscopy
unit of Sahlgren’s University Hospital. Exclusion criteria
were previous gastric surgery and use of antibiotics or
antisecretory or prokinetic drugs in the 2 weeks preceding
the study. In addition, we studied 147 subjects 4–12 weeks
after completion of eradication therapy against H. pylori. The
study was approved by the Ethical Committee of Göteborg
University, and informed consent was obtained from each
subject.

A. Hamlet et al.
Scand J Gastroenterol 1999 (4)
positive (24). One hundred and thirty-four consecutive dyspeptic patients (69 men, 65 women; mean age, 54 years; range, 21–85 years) agreed to perform the tablet-based UBT immediately before they underwent a routine upper gastrointestinal endoscopy at which 5 antral biopsy specimens were taken. One specimen was for CLO testing (Delta West, Bentley, Australia), two for culture, and two for histology (Giemsa stain).

In the third phase we used a biometric method (see below) to determine the optimal cut-off value for the tablet-based UBT in a mixed population comprising 147 healthy volunteers, 189 dyspeptic patients, and 147 patients after eradication therapy, and in each of the 3 different populations. Most of the dyspeptic subjects had participated in phase 1 or 2, whereas all the remaining subjects were new participants.

In the fourth phase we compared the efficacies of the tablet-based UBT and the ESP UBT in terms of detecting H. pylori infection during ongoing acid-suppression therapy. The comparison was made using the optimal sampling points for each test determined in phase 1. Twenty dyspeptic subjects (14 men, 6 women; mean age, 59 years; range, 40–75 years) who were positive by the ESP UBT were randomized to perform either the tablet-based UBT or the ESP UBT after treatment with omeprazole (Losec®, Astra Hässle, Göteborg, Sweden), 20 mg twice daily for 7 days.

Biometric determination of cut-off levels

The cut-off levels between positive and negative results were determined independently of other diagnostic methods by using a biometric method for evaluating gastric urease activity previously described by Berstad et al. (25). In brief, logarithmic transformation of gastric urease activity in random subjects yields two separate populations (H. pylori-negative and -positive subjects), each normally distributed. Adjusted for relative frequencies, their normal probability density function intercepts at one point, estimated as the log cut-off. At this point, the probability of a false-positive or false-negative decision of whether gastric urease activity is increased or not is the smallest. Hence, the test’s antilogarithm was used as the optimal cut-off value.

Statistics

Results are expressed as means ± standard error of the mean. Before the statistical analysis the excess values were transformed to the logarithmic scale. The tablet-based UBT and the ESP UBT were compared for equivalence, for H. pylori-negative and H. pylori-positive subjects separately, using analysis of variance. After omeprazole treatment the UBTs were compared by using the unpaired t test (two-tailed). Normality was assessed with the Wilk–Shapiro W test.

Fig. 1. Individual values of excess $^13\text{CO}_2$ excretion (‰ per mil) of 12 Helicobacter pylori-positive (open circles) and 28 H. pylori-negative (filled circles) subjects after intake of 100 mg ^13C urea as tablets (A) and as a water solution (B). Bars represent mean values for H. pylori-positive subjects. Values not shown are <0.6 ‰ per mil. The tablet-based urea breath test (UBT) was performed while fasting, whereas the standard UBT was performed after intake of a fatty test meal, in accordance with the European Standard Protocol.

Scand J Gastroenterol 1999 (4)
H. pylori obtained with the ESP UBT (Fig. 1). In the 28
\(P = 0.001 \) and occurred earlier (10 versus 40 min) than that
in negative subjects intake of the \(^{13} \text{C} \) urea tablets resulted in an
excess \(^{13} \text{C} \) urea solution (Fig. 1). Furthermore, the tablet-
based UBT also gave a peak \(^{13} \text{CO}_2 \) excess value that was
significantly higher after intake of the \(^{13} \text{C} \) urea tablets than after intake of
the \(^{13} \text{C} \) urea water solution (Fig. 1). In these subjects the
excess \(^{13} \text{CO}_2 \) values at 5, 10, and 20 min were significantly
higher after intake of the \(^{13} \text{C} \) urea tablets than after intake of
the \(^{13} \text{C} \) urea water solution (Fig. 1). Furthermore, the tablet-
based UBT also gave a peak \(^{13} \text{CO}_2 \) excess value that was
significantly higher (41 ± 5.6 versus 25 ± 4.9 \(\delta \) per mil;
\(P = 0.001 \)) and occurred earlier (10 versus 40 min) than that
obtained with the ESP UBT (Fig. 1). In the 28 \(H. \text{pylori} \)-negative subjects intake of the \(^{13} \text{C} \) urea tablets resulted in an
excess \(^{13} \text{CO}_2 \) excretion that barely exceeded background
levels at all time points studied (Fig. 1A), whereas intake of the
\(^{13} \text{C} \) urea solution resulted in a significant increase of
excess \(^{13} \text{CO}_2 \) excretion at 5, 10, and 20 min (Fig. 1B) that
resulted in 12 false-positive cases at 5 min and 3 at 10 min
(>5 \(\delta \) per mil). No false-positive cases were observed when using the tablet-based UBT.

The biometric analysis showed that the optimal sampling
point—that is, the sampling point yielding the best diagnostic
reliability (in parentheses)—occurred at 10 min for the tablet-
based UBT (99.7%) and at 40 min for the ESP UBT (97.7%).
At 5, 10, and 20 min the statistical probability of obtaining a
false diagnosis (either falsely positive or falsely negative) was
lower for the tablet-based UBT than for the ESP UBT (0.8% versus
26% at 5 min, 0.3% versus 17% at 10 min, 0.4% versus
4.9% at 20 min), whereas at 40 min this factor did not differ
between the two tests (2.9% versus 2.3%).

Results

Comparison of excess \(^{13} \text{CO}_2 \) excretion curves for the
tablet-based UBT and the ESP UBT

In the group of 40 dyspeptic patients who underwent both
the tablet-based and the ESP UBT, 12 (30%) patients had an
excess \(^{13} \text{CO}_2 \) value exceeding 5 per mil at 40 min and were
thus classified as \(H. \text{pylori} \)-positive. In these subjects the
excess \(^{13} \text{CO}_2 \) values in 42 of the 134 (31%) patients. As compared with the ‘gold
standard’, the tablet-based UBT gave 2 false-negative and no
false-positive results, thus identifying 40 of the 42 \(H. \text{pylori} \)-positive patients and all of the 92 \(H. \text{pylori} \)-negative patients
(Table I). Hence, the sensitivity and specificity of the tablet-
based UBT were 95% and 100%, respectively.

Biometric determination of cut-off level

Among the mixed population comprising 147 healthy
volunteers, 189 dyspeptic patients, and 147 patients after
eradication therapy and in each of these subgroups the 10-min
excess \(^{13} \text{CO}_2 \) values showed a bimodal log-normal distribution.
Relative frequencies, logarithmic means, and
standard deviations for negative and positive UBT results in
the mixed population and the corresponding values for the
three subgroups are given in Table II together with the
estimated cut-off point and risk of errors for each group. In the
mixed population the optimal cut-off point was 1.8 \(\delta \) per mil.
At this point, the risk of obtaining a false diagnosis was 1.1%.

Table I. Comparison of results of the \(^{13} \text{C} \) tablet-based urea breath test (UBT) with those of a gold standard*

<table>
<thead>
<tr>
<th>(^{13} \text{C}) tablet-based UBT (t = 10 min)</th>
<th>(^{13} \text{C}) tablet-based UBT</th>
<th>(^{13} \text{C}) tablet-based UBT</th>
<th>(^{13} \text{C}) tablet-based UBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
<td>92</td>
<td>94</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>92</td>
<td>134</td>
</tr>
</tbody>
</table>

* The gold standard was based on the combined results of the UBT and three biopsy-based tests (culture, histology, CLO test). A patient
was defined as being \(H. \text{pylori} \)-positive if two or more of these tests were positive. On the basis of these results, sensitivity is
40:42 = 95%, and specificity is 92:92 = 100%.

Table II. Results and optimal cut-off points of the tablet-based \(^{13} \text{C} \) urea breath test in a a mixed population and individual subgroups of healthy
volunteers, dyspeptic patients, and patients after eradication therapy

<table>
<thead>
<tr>
<th>Mixed population, (n = 483)</th>
<th>Healthy volunteers, (n = 147)</th>
<th>Dyspeptic patients, (n = 189)</th>
<th>Patients after eradication therapy, (n = 147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TUBT}^+)</td>
<td>(\text{TUBT}^-)</td>
<td>(\text{TUBT}^+)</td>
<td>(\text{TUBT}^-)</td>
</tr>
<tr>
<td>Relative frequency</td>
<td>0.25</td>
<td>0.75</td>
<td>0.22</td>
</tr>
<tr>
<td>Mean log</td>
<td>1.13</td>
<td>−0.22</td>
<td>1.09</td>
</tr>
<tr>
<td>Standard deviation log</td>
<td>0.44</td>
<td>0.39</td>
<td>0.35</td>
</tr>
<tr>
<td>Optimal cut-off point ((\delta) per mil)</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Estimated risk of errors</td>
<td>1.1%</td>
<td>0.3%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

\(\text{TUBT}^+/− \) = increased or not increased gastric urease activity as determined with the \(^{13} \text{C} \) tablet-based urea breath test (t = 10 min);
The cut-off points and related risks of error (in parentheses) for healthy volunteers, dyspeptic patients, and patients after eradication therapy were 2.2 (0.3%), 1.8 (1.8%), and 1.3 (1.8%), respectively. In this study changing the cut-off from 2.2 to 1.8 δ per mil would not have affected the classification of H. pylori-positive and -negative subjects, since none of the healthy volunteers had excess δ 13CO2 values in this range. On the other hand, changing the cut-off from 1.3 to 1.8 δ per mil in the posttreatment group would have meant that the three subjects with UBT values between 1.3 and 1.8 had been classified as H. pylori-negative instead of H. pylori-positive. Overall, 10 of 483 subjects (2%) had excess δ 13CO2 values in the range between 1.3 and 2.2. Of these 10 subjects, 5 belonged to the posttreatment group, 1 to the group of healthy volunteers, and 4 to the group of dyspeptic subjects.

Tablet-based UBT versus ESP UBT during omeprazole treatment

Twenty ESP UBT-positive patients were reexamined either with the ESP UBT or with the tablet-based UBT after 7 days of treatment with 20 mg omeprazole twice daily. The comparison was made using the optimal sampling point for each test—that is, at 10 min for the ESP UBT and at 40 min for the ESP UBT. Of the 10 subjects who were randomized to perform a repeat ESP UBT, 1 was excluded owing to a missing breath sample. The other nine subjects all had a lower excess δ 13CO2 excretion after omeprazole treatment (25 ± 4.9 versus 5.9 ± 1.5; \(P = 0.008 \)), and in six of these the excess δ 13CO2 value decreased to below the ESP cut-off (<5 δ per mil) (Fig. 2). Among the 10 subjects who performed the tablet-based UBT after receiving omeprazole treatment the mean excess δ 13CO2 value was significantly higher than in the conventional UBT group (31 ± 7.6 versus 5.9 ± 1.5 δ per mil; \(P = 0.0002 \)), and none of the 10 subjects had an excess δ 13CO2 value of less than 5 δ per mil (Fig. 2).

Discussion

The 13C UBT offers an important advantage over the 14C UBT inasmuch as it can be performed outside the hospital setting in the local surgery/clinic or even at home, after which a test tube of expired air can be sent by regular mail for analysis. However, in terms of methods the 13C UBT still lags behind the 14C UBT, hampering a more widespread applicability of this useful test. Our previous work with the 14C UBT showed the advantages of supplying the urea solution in a quick-dissolve capsule as compared with a conventional drink (3). When administered as a drink, interference from urease-producing bacteria in the oropharynx (26–28) may cause false-positive results in early breath samples (2, 3, 29). Therefore, most UBT protocols do not obtain the diagnostic breath sample until 20–30 min after dosage and usually include a test meal to prevent premature emptying of urea from the stomach (2). In contrast, when using a capsule or tablet, the problem of oropharyngeal bacteria is eliminated, and the test can be performed already after 10 min (3, 9), thereby obviating the need for a test meal. On the other hand, this makes great demands on the formulation of urea—that is, capsule or tablet; it must be resistant to disintegration in the oropharynx and at the same time guarantee disintegration and dissolution in the stomach within 2–5 min.

One major advance of the present formulation is thus that we have created a solid dosage form of 13C urea (ready-to-use tablet), characterized by an almost instantaneous disintegration and dissolution of the 13C urea tablet after entering the stomach (20–23). When testing this new tablet, we found that in comparison with a conventional urea drink UBT performed with a test meal, the tablet-based UBT performed while fasting gave greater separation between positive and negative results at early time points (<20 min). After drinking the urea solution, even H. pylori-negative subjects had an increased excess δ 13CO2 excretion during the first 10 min, resulting in several false-positive results, whereas after intake of the tablets, the background 13C urea hydrolysis was close to zero, and no false-positive results occurred. Compared with the conventional UBT, the tablet-based UBT also gave higher mean excess δ 13CO2 values in H. pylori-positive subjects during the first 20 min after dosing, and the peak value
occurred much earlier (10 versus 40 min). This suggests that the 13C urea tablet confers protection against oropharyngeal urease activity, thereby leaving more urea to be hydrolysed in the stomach. It also suggests that the tablet formulation provides a more rapid and effective exposure of urea to the stomach than the urea solution. The peak values are important because they often coincide with the optimal sampling points.

In accordance with this, the biometric analysis confirmed that the best diagnostic reliability for the tablet-based UBT and the ESP UBT was obtained at 10 min and 40 min, respectively. The quicker and wider separation of positive and negative results has great clinical importance not only because it enables shortening of the test time to 10 min and omission of the test meal without loss of diagnostic accuracy but also because it may enable a reduction of the dose of isotope used and hence reduced costs.

In a separate study the tablet-based UBT (10-min value) was validated against a gold standard in 134 dyspeptic subjects. The gold standard included three biopsy-based tests (culture, histology, CLO test) and the UBT result. If two or more tests were positive, the patient was defined as being H. pylori-positive. Compared with the gold standard, the tablet-based UBT correctly identified 40 of 42 H. pylori-positive patients and all of 92 H. pylori-negative patients, thus giving 95% sensitivity and 100% specificity, which is similar to or better than most published 13C UBT protocols (2). Since both patients with false-negative UBT results were positive by all three biopsy-based tests, the most reasonable explanation of their low excess δ 13CO2 values (0.5 and 1.5) seems to be a too rapid passage of the tablet through the stomach. This may possibly have been prevented by a test meal. However, in our view, the advantages of omitting the test meal from the protocol by far outweigh the relatively small risk of rapid emptying of the tablet, not only because the test meal increases costs and makes the test less user-friendly but also because it may reduce the UBT values (3) and thereby the separation between negative and positive results.

The most commonly used cut-off level for the 13C UBT, 5 δ per mil, was originally determined for the ESP UBT (19). The optimal cut-off point for the tablet-based UBT should be lower owing to its much lower levels of background 13C urea hydrolysis in uninfected subjects and greater separation between positive and negative UBT results. Furthermore, a recent study has suggested that a higher accuracy could be obtained in the UBT if two different cut-off levels are applied: a higher cut-off in a population in which a low prevalence of infection is expected—for example, healthy volunteers—and a lower cut-off in dyspeptic patients (in whom the prevalence of infection is higher than in a normal population) (30). In the present study, therefore, we used a biometric method to determine the cut-off for the tablet-based UBT with the smallest possible arbitrariness (25), both in a mixed population consisting of healthy volunteers, dyspeptic patients, and patients after eradication therapy, and in each of these subgroups separately. Ranging between 1.3 and 2.2, the cut-off points for the tablet-based UBT were, as expected, generally lower than the ones previously reported for conventional UBTs (11, 19). The optimal cut-off point in the mixed population was estimated to be 1.8 δ per mil. At this point, the statistical probability of obtaining a false-negative or -positive diagnosis was 1.1%. The same cut-off point was obtained in the subgroup of dyspeptic subjects, whereas in agreement with previous studies (19, 30), we found a slightly higher cut-off among healthy volunteers (2.2) and slightly lower one in the posttreatment group (1.3). Therefore, when using the tablet-based UBT for screening in a “healthy” population, it might be beneficial to use 2.2 δ per mil as a cut-off point, since this decreased the risk of obtaining a false diagnosis to only 0.3%. It is more difficult to recommend an exact cut-off point to use in the posttreatment group, since some of the posttreatment results were too close to each other to be separated, and this had negative impact on the diagnostic reliability at the optimal cut-off. The best way to deal with this problem is probably to introduce a grey zone containing unreliable/uncertain results (6, 31). We therefore recommend that patients with UBT values ranging between 1.3 and 2.2 δ per mil should undergo repeat breath testing and/or a supplementary upper endoscopy with biopsies, to reliably assess their H. pylori status. The grey zone concept is particularly useful after eradication treatment and might also help discover some incorrect diagnoses before treatment. In this study 5 of the 147 patients (3.4%) in the posttreatment group and 5 of the 336 remaining subjects (1.5%) had excess δ 13CO2 values within the grey zone.

Although several studies have shown that equivocal or false-negative UBT results often occur in patients taking acid-suppression therapy (12–15), the possibility that this effect is the result of an inherent pH-related methodologic problem has not previously been taken into consideration. In the present study we tested whether citric acid supplementation of the 13C urea tablet would facilitate UBT diagnosis of H. pylori infection during ongoing acid-suppressive therapy (omeprazole, 20 mg twice daily) by providing an acidic microenvironment in the hypochlorhydric stomach. We found that in all nine patients who were retested with a conventional UBT (t = 40 min) after 7 days of omeprazole treatment, the excess δ 13CO2 excretion was reduced, and six of the nine patients converted from positive to negative. By contrast, none of the 10 patients who performed the tablet-based UBT (t = 10 min) turned false negative. These results suggest that the citric acid supplementation of the 13C urea tablet indeed provides H+ ions in sufficient amounts to promote the conversion of bicarbonate to carbon dioxide in the interface between urease and 13C urea. Furthermore, the notion that an acidic pH is necessary for the UBT to work properly is also in agreement with the recent finding that the urease activity of H. pylori is relatively low at pH 8.0 or 7.0 but increases about 10-fold at a pH below 6.5 (32). The ability to reliably diagnose H. pylori infection in patients taking acid-suppression therapy is a major advantage for the tablet-based UBT, since patients with
ongoing dyspeptic symptoms often are unwilling to withhold such medication while awaiting breath testing. However, since it is unclear at present whether PPIs in therapeutic doses exert significant anti-\textit{H. pylori} effects in vivo or just change the distribution of \textit{H. pylori} in the stomach (12, 13, 33), further clinical trials are needed to establish whether using the tablet-based UBT will completely eliminate the problem of false-negative UBT results during acid-suppression therapy.

In conclusion, we have shown that the tablet-based 13C UBT is at least as accurate as a standard 13C UBT and excels in speed and simplicity. In addition, it offers the unique advantage of being able to reliably detect \textit{H. pylori} infection during acid-suppression therapy. This extremely user-friendly tablet-based UBT will completely eliminate the problem of false-negative UBT results during acid-suppression therapy.

Acknowledgements

This study was supported by grants from the Medical Research Council (17X-760, 8663) and the Magnus Bergvall Foundation.

References

20. Van de Wouw BAM, de Boer WA, Hermsen HWEM, Valkenburg GJM, Geuskens LM, Tytgat GNJ. Usefulness of the 13C urea breath test as a semi-quantitative monitoring test for detecting \textit{Helicobacter pylori} infection. Scand J Gastroenterol 1999 (4)

Received 16 November 1998
Accepted 11 February 1999