13C-Aminopyrine Breath Test

<table>
<thead>
<tr>
<th>13C-Aminopyrine</th>
<th>Molecular weight: 233.29 g/mol</th>
<th>Enrichment: 99 %</th>
<th>Labeled C-atoms: 2</th>
<th>Dosage: 75 mg</th>
</tr>
</thead>
</table>

Metabolism

13C-Aminopyrine undergoes a two-step N-demethylation by cytochrome P-450 monooxygenases including CYP2C19, CYP1A2 and CYP3A4, yielding formaldehyde and amino-antipyrine\(^1\). The formaldehyde is further oxidized to bicarbonate and exhaled as \(^{13}\text{CO}_2\), or deposited in the bicarbonate pool\(^2\). As N-demethylation occurs exclusively in the liver with a low extraction rate, aminopyrine metabolism reflects the efficiency of aminopyrine metabolism\(^3\). It is therefore a good measure of hepatic metabolic capacity, i.e. the “functional hepatic mass”.

Applications of 13C-Aminopyrine Breath Test

The 13C-Aminopyrine Breath Test is very useful for quantitative assessment of liver function in conditions such as established chronic hepatitis and cirrhosis\(^4,5\). It can be used for example in Hepatitis C patients to quantify progression of the disease\(^6\).

The patient should have fasted for 8 hours prior to the test. Smoking should also be avoided at least one hour prior to the test\(^7\). The patient should not drink carbonated water or soft drinks prior to the test since that might interfere with the results. In addition, oxygen supplementation should be avoided because increased oxygen content in exhaled breath can influence \(^{13}\text{CO}_2\) measurement by NDIRS\(^8\).

Test Performance Procedure (see IRIS® Operating Manual for additional information).

1. Collect zero (basal) breath sample as described in manual.
2. Patient takes 13C-Aminopyrine (75 mg) dissolved in warm water (100 ml).
3. Collect additional breath samples as shown below (Table 1).
4. Analyze all 10 breath samples with IRIS®-3.

<table>
<thead>
<tr>
<th>#1 Bag</th>
<th>#2 Bag</th>
<th>#3 Bag</th>
<th>#4 Bag</th>
<th>#5 Bag</th>
<th>#6 Bag</th>
<th>#7 Bag</th>
<th>#8 Bag</th>
<th>#9 Bag</th>
<th>#10 Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>10 min</td>
<td>20 min</td>
<td>30 min</td>
<td>40 min</td>
<td>50 min</td>
<td>60 min</td>
<td>80 min</td>
<td>100 min</td>
<td>120 min</td>
</tr>
</tbody>
</table>

Table 1: 13C-Aminopyrine Breath Test Sample Collection

Results and interpretation

Typical results for the 13C-Aminopyrine Breath Test are presented in Figures 1 to 4. The 13C-Aminopyrine test is very sensitive and precise, as can be seen from the very narrow “normal” range. This makes it possible to detect even patients with early stage liver disease\(^6,9,10\).
For the 13C-Aminopyrine Breath Test, cut-off values have been established in a study with 135 patients (see table below).

<table>
<thead>
<tr>
<th>Condition</th>
<th>dose/hr (%) at 30 min</th>
<th>% cum. dose at 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrosis stages 0/1/2</td>
<td>6.62 - 7.10 ± 2.9</td>
<td>9.21 - 10.06 ± 3.8</td>
</tr>
<tr>
<td>Fibrosis stages 3 / 4</td>
<td>2.48 - 3.13 ± 1.2</td>
<td>3.62 - 4.56 ± 2.0</td>
</tr>
<tr>
<td>Cirrhosis, not established</td>
<td>6.77 ± 2.7</td>
<td>9.63 ± 3.6</td>
</tr>
<tr>
<td>Cirrhosis, established</td>
<td>2.48 ± 1.2</td>
<td>3.68 ± 1.9</td>
</tr>
</tbody>
</table>

Table 2: Cut-off values for 13C-Aminopyrine Breath Test

References